教育行業(yè)A股IPO第一股(股票代碼 003032)

全國(guó)咨詢/投訴熱線:400-618-4000

用戶流失預(yù)警項(xiàng)目實(shí)戰(zhàn)[大數(shù)據(jù)培訓(xùn)]

更新時(shí)間:2019年11月08日11時(shí)57分 來(lái)源:傳智播客 瀏覽次數(shù):

1、項(xiàng)目簡(jiǎn)介
當(dāng)下我們生活的環(huán)境中,經(jīng)常會(huì)有各種購(gòu)物平臺(tái)、淘寶平臺(tái)、京東平臺(tái)等等,我們都是其中的用戶之一,如果咱們長(zhǎng)時(shí)間不用某一平臺(tái),可能會(huì)收到某某平臺(tái)的促銷信息,那么平臺(tái)為什么給我們發(fā)這個(gè)消息呢,顯然平臺(tái)是經(jīng)過(guò)數(shù)據(jù)分析,他會(huì)分析我們不用這個(gè)平臺(tái)的可能性有多大(即對(duì)于平臺(tái)來(lái)說(shuō)流失用戶的可能性有多大),現(xiàn)在拿到某平臺(tái)的一組數(shù)據(jù),進(jìn)行建模分析。這里將嘗試使用多種分類器來(lái)驗(yàn)證預(yù)測(cè)效果。
·數(shù)據(jù)收集

用戶流失預(yù)警
·環(huán)境需求
Anaconda3 + pycharm + numpy + pandas + scikitlearn + SVM+RF+KNN
·運(yùn)行結(jié)果
用戶流失預(yù)警2
2. 代碼實(shí)現(xiàn)

#TODO:流失預(yù)#1.導(dǎo)包
from __future__ import division
import pandas as pd
import numpy as np
#2.加載數(shù)據(jù)與觀察數(shù)據(jù)
churn_df = pd.read_csv('UserDrain_data/churn.csv')
col_names = churn_df.columns.tolist()
# print("Column names:\n",col_names)
# print(churn_df.shape) #(3333, 21)
# Column names:['State', 'Account Length', 'Area Code', 'Phone', "Int'l Plan", 'VMail Plan',
'VMail Message', 'Day Mins', 'Day Calls', 'Day Charge', 'Eve Mins', 'Eve Calls', 'Eve Charge',
'Night Mins', 'Night Calls', 'Night Charge', 'Intl Mins', 'Intl Calls', 'Intl Charge', 'CustServ
Calls', 'Churn?']
to_show = col_names[:6] + col_names[-6:] #6 列與后6 # print(len(to_show))#12 # print ("\nSample data:\n",churn_df[to_show].head(6))
# State Account Length Area Code ... Intl Charge CustServ Calls Churn?
# 0 KS 128 415 ... 2.70 1 False.
# 1 OH 107 415 ... 3.70 1 False.
#2.1 類別編碼
churn_result = churn_df['Churn?']
y = np.where(churn_result == 'True.',1,0)
#2.2 刪除不需要對(duì)應(yīng)列數(shù)據(jù)
to_drop = ['State','Area Code','Phone','Churn?']
churn_feat_space = churn_df.drop(to_drop,axis=1)
#yes 或者no 需要轉(zhuǎn)化為布爾類型數(shù)據(jù)
yes_no_cols = ["Int'l Plan","VMail Plan"]
churn_feat_space[yes_no_cols] = churn_feat_space[yes_no_cols] == 'yes'
# print(churn_feat_space[yes_no_cols])
# Int'l Plan VMail Plan
# 0 False True
# 1 False True
# 獲取數(shù)據(jù)屬性名
features = churn_feat_space.columns
# print("churn_feat_space:\n",churn_feat_space.head())
# Account Length Int'l Plan ... Intl Charge CustServ Calls
# 0 128 False ... 2.7 1
# 1 107 False ... 3.7 1
#dataframe 轉(zhuǎn)化為ndarray 數(shù)組,同時(shí)數(shù)組中的元素類型為float 類型
#對(duì)應(yīng)的布爾類型的值,True 1,False 0
X = churn_feat_space.as_matrix().astype(np.float)
np.set_printoptions(threshold=np.NaN)
# print("churn_feat_space.as_matrix().astype(np.float):\n",X)
# [[128. 0. 1.... 3. 2.7 1.]
# [107. 0. 1.... 3. 3.7 1.]
# 2.3 數(shù)據(jù)標(biāo)準(zhǔn)化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X = scaler.fit_transform(X)
# print("Feature space holds %d observations and %d features" % X.shape) #3333 17 # Feature space holds 3333 observations and 17 features
# print("Unique target labels:", np.unique(y))# [0 1]
# print(X[0])
#標(biāo)準(zhǔn)化之后的第一行數(shù)據(jù)
#[ 0.67648946 -0.32758048 1.6170861 1.23488274 1.56676695 0.47664315
# 1.56703625 -0.07060962 -0.05594035 -0.07042665 0.86674322 -0.46549436
# 0.86602851 -0.08500823 -0.60119509 -0.0856905 -0.42793202]
# print(len(y[y == 0])) #2850
#3.KFold K 折交叉驗(yàn)證
from sklearn.cross_validation import KFold
def run_cv(X,y,clf_class,**kwargs):
#創(chuàng)建kfold 對(duì)象
kf=KFold(len(y),n_folds=5,shuffle=True)
y_pred=y.copy()
#迭代
count=0
for train_index,test_index in kf:
count=count+1
#y 對(duì)應(yīng)的標(biāo)簽數(shù)量:3333
# print("train_index 數(shù)量:",len(train_index)) #train_index 數(shù)量: 2666
# print("test_index 數(shù)量:", len(test_index)) # test_index 數(shù)量: 667
# print(test_index)
X_train,X_test=X[train_index],X[test_index]
y_train=y[train_index]
#初始化一個(gè)分類器模型
clf=clf_class(**kwargs)
clf.fit(X_train,y_train)
y_pred[test_index] = clf.predict(X_test)
# print("迭代次樹(shù):", count)#5
return y_pred
#4.建模
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier as RF
from sklearn.neighbors import KNeighborsClassifier as KNN
def accuracy(y_true,y_pred):
# NumPy interprets True and False as 1. and 0.
return np.mean(y_true == y_pred)
#4.1 SVM / RF /KNN 三種算法預(yù)測(cè)準(zhǔn)確率
print("Support vector machines:","%.3f" % accuracy(y, run_cv(X,y,SVC)))
print("Random forest:","%.3f" % accuracy(y, run_cv(X,y,RF)))
print("K-nearest-neighbors:","%.3f" % accuracy(y,run_cv(X,y,KNN)))



推薦了解:傳智播客大數(shù)據(jù)課程
0 分享到:
和我們?cè)诰€交談!